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Abstract The p53 protein interaction network is crucial in reg-
ulating the metazoan cell cycle and apoptosis. Here, the robust-
ness of the p53 network is studied by analyzing its degeneration
under two modes of attack. Linear Programming is used to cal-
culate average path lengths among proteins and the network
diameter as measures of functionality. The p53 network is found
to be robust to random loss of nodes, but vulnerable to a targeted
attack against its hubs, as a result of its architecture. The signif-
icance of the results is considered with respect to mutational
knockouts of proteins and the directed attacks mounted by tu-
mour inducing viruses.
! 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The p53 network
In multicellular organisms (metazoans), cellular prolifera-

tion is tightly regulated. Cells accumulate in a co-ordinated
way during growth or repair, and undergo programmed cell
death (apoptosis) when genetically damaged, virally infected
or the developmental program requires it. Proliferation is reg-
ulated via cyclical activation of different cyclin-dependent ki-
nases (CDKs), which mediate the temporal activation of cell
growth, DNA synthesis and cell division. Apoptosis is trig-
gered in response to specific signals, and the cell is destroyed
when a cascade of proteases (the caspases) are activated. Fail-
ure of this control system, leading to either unregulated prolif-
eration or unnecessary apoptosis, is causative of both
tumourigenesis and developmental diseases.

All organisms control progression through the cell cycle,
and can respond to cellular stress by activating cell cycle
checkpoints and repairing damaged components if necessary.
In addition, multicellular organisms have evolved the ability
to trigger apoptosis in cases where risk to the organism is
unacceptably high. In response to stress, a metazoan cell
must decide between continued (or resumed) progression
through the cell cycle or initiation of apoptosis. This decision
is mediated by a protein-interaction network, at the centre of
which lies the p53 protein. p53 is found only in metazoan
cells, and combines protein interaction domains, regulatory
domains and a sequence specific DNA recognition domain
that allow the integration of intra- and intercellular signals
with gene transcription [1]. Under normal conditions, p53 is
turned over rapidly by proteolysis and is inactive. Cellular
stress signals result in the stabilization of p53 so that it rises
in concentration to a level where it can activate transcription
of its target genes. Depending on the circumstances (for
example cell type and nature and strength of the stress sig-
nal), gene transcription resulting from elevated p53 levels
produces responses including pausing of cell cycle, DNA re-
pair, permanent arrest of replication, or apoptosis. p53 is
activated by both intrinsic and extrinsic stress signals, includ-
ing DNA damage (e.g. from ionizing radiation), mitotic spin-
dle damage, aberrant growth signals, hypoxia, ribonucleotide
depletion, and loss of cell adhesion [2], many of which are
indicators of tumourigenesis. The importance of the p53 re-
sponse network in the prevention of cancer is striking, and
mutations reducing p53 activity are present in over 50% of
human tumours [3].

1.2. Network architectures
Graph theory is a branch of mathematics used to analyse

complex networks of nodes and connections. Initial work fo-
cused on two main types of graphs; regular and random.
The connections in a regular graph are very strictly ordered
with all nodes having the same degree, k (number of connec-
tions to other nodes), much like the chemical bonds in a crystal
lattice. In a random network connections are placed between
any two nodes with a given probability.
The structure of a network with N nodes is often summa-

rised by plotting k against the probability distribution
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function, P(k) (the number of nodes with k connections, di-
vided by the total number of nodes in the network). The plot
of P(k) for a random graph follows a Poisson distribution
peaking at the average value of k. For a regular network
the plot is a spike as all nodes have the same connectivity.
Counting the minimum number of connections that must
be followed to traverse from one node, i, to another, j, yields
the path length for that pair, lij. Within a random graph,
connections can !short-cut" across the entire network, and
so path lengths are typically much shorter than in a regular
graph [4]. One global metric of the structure of a network is
its diameter, D; the average path length among all nodes. It
is defined as:

D ¼ 2

NðN # 1Þ
XN#1

i¼1

XN

jP iþ1

lij ð1Þ

Watts and Strogatz [5] described the properties of a third
class of graphs. Their !small-world" networks combine the
small diameter of random graphs with the high local connec-
tivity of regular graphs. In addition to this small-world prop-
erty, many networks with no pre-designed architecture that
grow and evolve over time have a characteristic pattern of con-
nectivity. P(k) decays as a power law – the vast majority of
nodes have only a few connections, but there are several hubs
that are very highly connected. Unlike regular or random
graphs there is no characteristic degree of connectivity, and
so such networks are termed !scale-free". In recent years, a
great number of networks have been shown to be scale-free,
including the Internet [6], social interactions [7], neural net-
works [8], ecological food webs [8], metabolism [9], protein–
protein interactions [10], and gene transcription regulation
networks [4]. One explanation for the occurrence of this struc-
ture is that of network growth through preferential attachment
of additional nodes. New nodes are added and connected to
existing nodes with a probability proportional to their current
connectivity, with hubs being created by a positive-feedback
!rich getting richer" process. Barabási and Oltvai [4] describe
how this process might operate in protein–protein interaction
networks through gene duplication.

1.3. Network robustness
Much research has been conducted into the robustness of

networks, that is, their ability to remain relatively undisrupted
in the face of perturbation. Robustness can be defined, in topo-
logical terms, as the remaining communication ability within a
network as nodes or connections are removed. Real networks
also perform a function, be it electricity distribution or genetic
regulation, but modelling a complex network"s performance is
often prohibitively difficult. Network navigability is a neces-
sary (although not sufficient) prerequisite for adequate func-
tion, and so the diameter of the network is taken as an
acceptable proxy [7].
Either individual connections, or entire nodes can be re-

moved from a network, with the latter having a greater impact.
There are two main modes of attack upon the nodes of a net-
work – either removed at random, or the preferential targeting
of the hubs. A random graph responds identically to both ran-
dom and directed attacks as its connectivity is homogenous –
the majority of its nodes have roughly the same number of
links, approximately equal to the network"s average degree.
Upon successive deletion of nodes the diameter increases

monotonically until a critical threshold fraction has been ex-
ceeded, and the network undergoes a phase transition as it dis-
integrates into isolated fragments. In contrast, a scale-free
network is relatively immune to random node failure, but vul-
nerable to a targeted onslaught [4].

2. Methods

A model of the p53 network, a large module of the entire meta-
zoan protein interaction network, was constructed. The model was
then subjected to both random and directed modes of attack, and
its changing diameter studied. The objective was to analyze how
the network behaves in response to the stochastic protein knockouts
from mutation during tumourigenesis, and also in response to a tar-
geted attack.

2.1. Raw data
There are over 35 000 published articles relating to p53, its interac-

tions, its functions, and the consequences of its inactivation. These
articles describe p53 function in multiple organisms, multiple cell types
within those organisms, and under a wide range of different situations
within those cells. The result is a bewildering volume of information
relating to p53 interactions, the relative merits of which can be extre-
mely difficult to judge. As a result, very few studies have attempted
to fully connect the network in any meaningful way. Kohn [11] per-
formed an extensive literature review and presented an annotated
molecular interaction map of proteins involved in mammalian cell cy-
cle progression and checkpoints, DNA repair, and apoptosis. The
molecular maps of these processes all feature p53 prominently, and
although the connections are incomplete and inevitably contain inac-
curacies, the majority of the described interactions are experimentally
validated and well understood. It is unlikely that a few false-positives
or negatives would drastically alter the architecture of the network or
the calculations of its diameter.
Although there is a high degree of modularity within interaction net-

works, the dissociation of the ‘‘p53 network’’ will follow largely arbi-
trary borders. Our study therefore followed the same boundaries
selected by Kohn, yielding a network containing 104 nodes and 226
unique connections. A representation of this was constructed using
the Pajek program for large network analysis (http://vlado.fmf.uni-lj.
si/pub/networks/pajek/), as shown in Fig. 1. The vast majority of the
nodes can be seen to be poorly connected within the network, whereas
very few of the nodes are hubs with a high centrality.
All interactions were assumed to be mutual. This is a valid assump-

tion for proteins reciprocally binding in a complex, but transcription
regulation events are directional. Such interactions account for only
around 5% of the total described by Kohn. Although the linear pro-
gramming algorithm used [12] is capable of dealing with directionality,
the entire map was taken to be undirected to simplify the analysis. Sev-
eral nodes such as ssDNA (single stranded DNA), are not proteins, but
are nonetheless crucial objects that interact within the p53 control net-
work and so are included in this study.

2.2. Minimum path lengths
Linear programming (LP) is an extensively used technique for the

solution of problems involving the optimum allocation of limited re-
sources to competing demands. For this study, an LP algorithm is used
to calculate the shortest paths in the p53 network. This technique was
previously proposed to study minimum pathway distances in E. coli
small molecule metabolism [12]. The algorithm is capable of finding
in a single pass the shortest path lengths from a source protein, i*, to
all other proteins in the network. The notation used in the mathemat-
ical formulation is as follows:
Indices

i,j: proteins
Parameters

Cij: 1 if there is a connection (interaction) between i and j; 0 otherwise
T: large number
Continuous variables

li: path length from i* to i
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Each protein is systematically set as the source, i*, and the algorithm
finds the shortest path to all other proteins by solving the following LP
optimisation model:

maximise
X

i

li ð2Þ

subject to:

lj 6 li þ 1 8ði; jÞ: Cij ¼ 1 ð3Þ
li& ¼ 0 ð4Þ
li P 0 ð5Þ

Constraints (3) incorporate information related to network connectiv-
ity, facilitated by the use of parameter Cij. Constraint (4) assigns the
initial value of zero to protein i* to denote it as the source protein,
while constraint (5) requires all li variables to take positive values. Fi-
nally, unbounded solutions can be avoided by adding:

li 6 T 8i ð6Þ

It should be noted that if li equals T at the final solution then it can be
concluded that there is no path connecting the i* source node to pro-
tein i. In this case, the diameter computation would involve infinite
path lengths, and so the arbitrarily large value of T is substituted to
allow calculation.
The average path length (APL) for a protein is the mean of the

shortest paths between this and all other nodes in a network, summa-
rising the propinquity of a node to every other. Fell and Wagner [13]
calculated this metric for metabolites in E. coli core metabolism. Sim-
ilarly, this study uses the average path length for proteins in the p53
network, as a global measure of a node"s centrality.

2.3. Network attacks
The survivability of the p53 network in the face of both a directed or

random attack against its nodes was examined. At each stage of the at-
tack an additional protein was knocked-out and the diameter recalcu-
lated until all 104 had been removed, the sequence specified either by a
random permutation or in the case of the directed attack by rank order
of centrality. The random attack was repeated 100 times, and the
diameter at each step averaged across all runs. Here, the removal of
a node destroyed all the connections it possessed, but an attack against
only one connection at a time is also possible.

When a hub is knocked-out, nodes may become isolated from the
rest of the network. This produces nodes with no navigable route to
each other, in which case the path lengths are set equal to the arbi-
trarily large number T, given the value of 100 in this study. Tests were
performed for other values of T as well, and it was demonstrated that
the behaviour of the network is unaffected by this choice.

3. Results and discussion

Fig. 2 shows the relationship between connectivity, k, and
the probability distribution function, P(k). The number of
nodes with a given connectivity decay logarithmically as con-
nectivity increases. This power law is a defining feature of a
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Fig. 2. The power-law relationship between k and P(k).

Fig. 1. Visualization of the p53 network (based on data from Kohn [11]).
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scale-free graph, so it is possible that the p53 network also pos-
sesses such architecture.
For the calculation of the average path lengths and diameter

of the network, the LP algorithm was solved with GAMS [14],
using the CPLEX 6.5 solver algorithm, and run on a RS6000
workstation. Table 1 shows the nodes with lowest APLs, with
hubs being defined as those proteins with the very lowest
scores.
Fig. 3 shows the plot of network diameter over the first 30

knockouts with nodes removed in either a random attack, or
one directed against the hubs (nodes knocked-out in rank or-
der of APL). The diameter of the p53 network under a random
attack increases very slowly. Thanks to its architecture, the
majority of nodes in the network are poorly connected and
therefore their removal has a very small effect on network nav-
igability. Hub nodes are uncommon and so they are rarely hit.
The p53 network is shown here to be resistant to a random
pattern of attack, which equates to robustness to mutational
perturbation.
Under a directed onslaught, however, network communica-

tion fails as the diameter of the network rapidly degenerates.
The result of knocking out the first hub protein, p53, is an in-
crease in network diameter of over five-fold; from 3.1 to 16.1.
The loss of no other protein has such a devastating effect: re-
moval of the next four hubs produces only a further doubling
of the diameter. After the 24th knockout the diameter levels

off: the directed attack has removed all of the hubs, and conse-
quently the majority of routes between proteins. The network
has shattered into isolated subclusters, and most of the path
lengths between protein pairs are designated as 100, therefore
further knockouts can damage the network no further.
To assess the results statistically, the standard normal devi-

ate or Z-score is used, which measures the distance of any va-
lue from the mean of a population in standard deviation units.
The results of the directed attack performed on the p53 net-
work (see Fig. 3) are compared to the results of the same pat-
tern of attack on 100 random networks. For each random
network, 104 protein nodes were linked through random gen-
eration of 226 edges; the mean diameter ð!DÞ and the standard
deviation (r) from 100 random networks, and the p53 net-
work"s diameter (D) were used for Z-score calculation. Note
that diameter values were first normalised to compensate for
the fact that the p53 network has a lower initial diameter from
any random network, due to its scale-free nature.

Z ¼ D# !D
r

ð7Þ

Fig. 4 presents statistical analyses using Z-scores between the
p53 network and random networks. Z-scores indicate how
far and in what direction each item deviates from the random
mean. Z-score values greater than 3 are typically considered to
be significant. As can be seen in Fig. 4, our results differ con-
siderably from random; thus indicating that trends observed
cannot be attributed to chance.
The plot of network degeneration under directed attack

(Fig. 3) shows some interesting features. There are several
small plateaux where diameter is temporarily stable. For exam-
ple, navigability barely alters between the 2nd and 3rd knock-
outs (CDK2 and Cyclin A, respectively). These two proteins
bind together to allow progression through a cell cycle check-
point and activation of the DNA replication machinery. They
thus bind to a large number of the same proteins, and so within
this model are largely redundant – it is not until the second one
is knocked out that routes between certain nodes are lost and
the diameter jumps up. This behaviour under attack is an arte-
fact of the nature of the model, however. In reality, CDK2 and

Table 1
The 30 best-connected nodes in the p53 network, in order of ascending
Average Path Length (APL)

APL Proteins

1.9 p53
2.1 Cdk2
2.2 CycA
2.3 Cdk1, Mdm2, DP1-2, pRb
2.4 PCNA, RPA
2.5 DNA-PK, p21, p300, E2F1-2-3, Cdk7, CycH
2.6 Abl, Gadd45
2.7 CycB, CycD, CycE, PARP, ATM
2.8 ssDNA, Cdc25A, 14-3-3, pCAF, PKC
2.9 HMG, Karp-1, BRCA1
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Fig. 3. Degeneration of network diameter when nodes are knocked
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Cyclin A bind together as a complex and so need each other in
order to function. Knockout of either results in a loss of func-
tion of the other (and thus disappearance of its connections),
in other words, such nodes in the p53 network are not strictly
independent. The model also assumes bidirectionality of con-
nections, a non-dynamic presence of proteins in the cell (i.e.
the temporal component of protein concentrations is ignored),
and all connections are given an equal weighting. When more
complete data on protein dependencies, protein complexes,
temporal fluctuations, and relative importance of interactions
become available, these factors should be incorporated into
models such as this one.

3.1. Biological hackers
The complete set of proteins involved within the p53 net-

work and connections among them is still being mapped out,
but the power-law relationship demonstrated in Fig. 2 suggests
that it may posses a scale-free structure. The p53 network
shows a similar response under attack to scale-free networks
such as the Internet; it is robust against a random attack as
most of the protein knockouts will have negligible impact on
the global integrity of the network. This reliance on highly
connected nodes, however, renders the network vulnerable to
a directed attack. The most important nodes are selectively tar-
geted and the diameter of the p53 network rapidly degenerates.
A similar result was obtained on simulated attacks on the
Internet, which was found to be robust to random server fail-
ures, but vulnerable to the activities of hackers deliberately tar-
geting the hubs so as to wreak maximal havoc [7]. The question
arises as to whether it is biologically possible to orchestrate a
directed attack against the p53 network.
Such a threat does in fact exist in nature, operating not at a

genetic level, but against the translated proteins. DNA tu-
mour-inducing viruses (TIVs) increase their replication rate
and survival with an armoury of proteins that suppress the
normal apoptotic infection response, short-circuit the cell cycle
into continually synthesizing viral DNA, and force the cell into
a stealth mode to evade immune system surveillance. Table 2
summarises the oncoproteins produced by adenoviruses, and
the effect of their inhibition of target cellular proteins (data
from [15–17]).
The two most common targets, p53 and pRb, are also two of

the most central proteins in the network, with APLs of 1.9 and
2.3, respectively. Knocking out multiple downstream effector

proteins would have the same effect, but as this study suggests
it is much more efficient to selectively remove the hubs. This is
especially important for viruses, as their genome is often opti-
mized for rapid replication and cannot afford the information
cost of coding many oncoproteins. It is not advantageous for
the TIVs to completely destroy the p53 network either (as then
no DNA replication or cell division would occur); they need
only disable regions that halt cell cycle progression or trigger
apoptosis. It is conceivably for this reason that not all of the
target proteins are hubs (although none have an APL greater
than 3.2), but their removal disables specific functions of the
p53 network. The final column in Table 2 shows the calculated
diameter after the targeted proteins of the third column have
been knocked out using the LP algorithm. The TIV directed
strikes are effective at disrupting communication within the
p53 network, but do not increase the diameter so much that
the network shatters and function fails completely. TIVs thus
behave like biological hackers, targeting their attack against
some of the p53 network hubs and so exploiting the weakness
in its architecture.

4. Conclusions

The p53 cell cycle and apoptosis control network is inher-
ently robust to random knockouts of its proteins, which signi-
fies resilience against mutational perturbation provided by the
structure of the network itself. This robustness against muta-
tions, however, gives the network an Achilles Heel, as the reli-
ance on highly-connected nodes makes it vulnerable to the loss
of its hubs. Evolution has produced organisms that exploit this
very weakness in order to disrupt the cell cycle and apoptosis
system for their own ends: tumour inducing viruses target spe-
cific proteins to disrupt the p53 network, and this study has
identified these same proteins as the network hubs. Although
TIVs have previously been likened to !biological hackers", here
we show why the TIV attack is so effective – TIVs target a spe-
cific vulnerability of the network that can be explained in terms
of network architecture. A Z-score analysis of the results has
demonstrated that our findings differ considerably from ran-
dom and cannot be attributed to chance.
From the computational perspective, we display the

effectiveness of the algorithm in analysing the properties of a
large protein interaction signalling network. The algorithm

Table 2
Tumour inducing viruses, the nodes in the p53 network their oncoproteins target, and the extent of damage inflicted on the network by those
knockouts

TIV Viral protein Host protein Effect Diameter after KO

Adenovirus E1a pRb Apoptosis evasion 24.98
E1b/55Kd P53 Apoptosis evasion

Coxsackie unknown cyclin D1 Transcription/reactivation 5.00
HCMVa pp71 pRb, p107, p130 Transcription/reactivation 14.37
HPVb 16/18 E6 P53 Apoptosis evasion 27.07

E7 pRb, p107, p130 Transcription/reactivation
HSVc ICP0d DNA-PK Transcription/reactivation 3.12
SV40e Lg T Agf pRb, p53 Apoptosis evasion 24.98
aHuman cytomegalovirus.
bHuman papillomavirus.
cHerpes simplex virus.
dInfected cell protein.
eSimian virus 40.
fLarge T antigen.
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(previously applied to the analysis of the E. coli small molecule
metabolism network [12]) has thus been proven to be a valu-
able analysis tool for complex biological networks.
Finally, the connectionist network presented here is a first-

level model of the p53 cell cycle and apoptotic control network
with a specific and clearly-defined function. The fact that we
can represent and test the p53 network offers the future possi-
bility to attach directions and strength values to the connec-
tions as more biological data become available, in order to
make accurate predictions about the importance of individual
nodes and edges. This will allow frameworks like the one pre-
sented to be used in comparative analyses of how and why the
variable dynamic network components operate under different
evolutionary and cell type conditions. This paper represents
the first step in this exciting process.
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